Papers
Topics
Authors
Recent
2000 character limit reached

Exploring the bounds on the positive semidefinite rank (1704.06507v1)

Published 21 Apr 2017 in cs.CC, math.CO, and math.OC

Abstract: The nonnegative and positive semidefinite (PSD-) ranks are closely connected to the nonnegative and positive semidefinite extension complexities of a polytope, which are the minimal dimensions of linear and SDP programs which represent this polytope. Though some exponential lower bounds on the nonnegative and PSD- ranks has recently been proved for the slack matrices of some particular polytopes, there are still no tight bounds for these quantities. We explore some existing bounds on the PSD-rank and prove that they cannot give exponential lower bounds on the extension complexity. Our approach consists in proving that the existing bounds are upper bounded by the polynomials of the regular rank of the matrix, which is equal to the dimension of the polytope (up to an additive constant). As one of the implications, we also retrieve an upper bound on the mutual information of an arbitrary matrix of a joint distribution, based on its regular rank.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube