Neural System Combination for Machine Translation (1704.06393v1)
Abstract: Neural machine translation (NMT) becomes a new approach to machine translation and generates much more fluent results compared to statistical machine translation (SMT). However, SMT is usually better than NMT in translation adequacy. It is therefore a promising direction to combine the advantages of both NMT and SMT. In this paper, we propose a neural system combination framework leveraging multi-source NMT, which takes as input the outputs of NMT and SMT systems and produces the final translation. Extensive experiments on the Chinese-to-English translation task show that our model archives significant improvement by 5.3 BLEU points over the best single system output and 3.4 BLEU points over the state-of-the-art traditional system combination methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.