Papers
Topics
Authors
Recent
2000 character limit reached

Temporal Clustering (1704.05964v1)

Published 20 Apr 2017 in cs.DS and cs.CG

Abstract: We study the problem of clustering sequences of unlabeled point sets taken from a common metric space. Such scenarios arise naturally in applications where a system or process is observed in distinct time intervals, such as biological surveys and contagious disease surveillance. In this more general setting existing algorithms for classical (i.e.~static) clustering problems are not applicable anymore. We propose a set of optimization problems which we collectively refer to as 'temporal clustering'. The quality of a solution to a temporal clustering instance can be quantified using three parameters: the number of clusters $k$, the spatial clustering cost $r$, and the maximum cluster displacement $\delta$ between consecutive time steps. We consider spatial clustering costs which generalize the well-studied $k$-center, discrete $k$-median, and discrete $k$-means objectives of classical clustering problems. We develop new algorithms that achieve trade-offs between the three objectives $k$, $r$, and $\delta$. Our upper bounds are complemented by inapproximability results.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.