Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On fast bounded locality sensitive hashing (1704.05902v1)

Published 19 Apr 2017 in cs.DS

Abstract: In this paper, we examine the hash functions expressed as scalar products, i.e., $f(x)=<v,x>$, for some bounded random vector $v$. Such hash functions have numerous applications, but often there is a need to optimize the choice of the distribution of $v$. In the present work, we focus on so-called anti-concentration bounds, i.e. the upper bounds of $\mathbb{P}\left[|<v,x>| < \alpha \right]$. In many applications, $v$ is a vector of independent random variables with standard normal distribution. In such case, the distribution of $<v,x>$ is also normal and it is easy to approximate $\mathbb{P}\left[|<v,x>| < \alpha \right]$. Here, we consider two bounded distributions in the context of the anti-concentration bounds. Particularly, we analyze $v$ being a random vector from the unit ball in $l_{\infty}$ and $v$ being a random vector from the unit sphere in $l_{2}$. We show optimal up to a constant anti-concentration measures for functions $f(x)=<v,x>$. As a consequence of our research, we obtain new best results for \newline \textit{$c$-approximate nearest neighbors without false negatives} for $l_p$ in high dimensional space for all $p\in[1,\infty]$, for $c=\Omega(\max{\sqrt{d},d{1/p}})$. These results improve over those presented in [16]. Finally, our paper reports progress on answering the open problem by Pagh~[17], who considered the nearest neighbor search without false negatives for the Hamming distance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.