Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Learn to Model Motion from Blurry Footages (1704.05817v1)

Published 19 Apr 2017 in cs.CV

Abstract: It is difficult to recover the motion field from a real-world footage given a mixture of camera shake and other photometric effects. In this paper we propose a hybrid framework by interleaving a Convolutional Neural Network (CNN) and a traditional optical flow energy. We first conduct a CNN architecture using a novel learnable directional filtering layer. Such layer encodes the angle and distance similarity matrix between blur and camera motion, which is able to enhance the blur features of the camera-shake footages. The proposed CNNs are then integrated into an iterative optical flow framework, which enable the capability of modelling and solving both the blind deconvolution and the optical flow estimation problems simultaneously. Our framework is trained end-to-end on a synthetic dataset and yields competitive precision and performance against the state-of-the-art approaches.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.