Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Deep Learning Framework using Passive WiFi Sensing for Respiration Monitoring (1704.05708v1)

Published 19 Apr 2017 in cs.CV and cs.LG

Abstract: This paper presents an end-to-end deep learning framework using passive WiFi sensing to classify and estimate human respiration activity. A passive radar test-bed is used with two channels where the first channel provides the reference WiFi signal, whereas the other channel provides a surveillance signal that contains reflections from the human target. Adaptive filtering is performed to make the surveillance signal source-data invariant by eliminating the echoes of the direct transmitted signal. We propose a novel convolutional neural network to classify the complex time series data and determine if it corresponds to a breathing activity, followed by a random forest estimator to determine breathing rate. We collect an extensive dataset to train the learning models and develop reference benchmarks for the future studies in the field. Based on the results, we conclude that deep learning techniques coupled with passive radars offer great potential for end-to-end human activity recognition.

Citations (48)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.