Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Wave-like Decoding of Tail-biting Spatially Coupled LDPC Codes Through Iterative Demapping (1704.05408v1)

Published 18 Apr 2017 in cs.IT and math.IT

Abstract: For finite coupling lengths, terminated spatially coupled low-density parity-check (SC-LDPC) codes show a non-negligible rate-loss. In this paper, we investigate if this rate loss can be mitigated by tail-biting SC-LDPC codes in conjunction with iterative demapping of higher order modulation formats. Therefore, we examine the BP threshold of different coupled and uncoupled ensembles. A comparison between the decoding thresholds approximated by EXIT charts and the density evolution results of the coupled and uncoupled ensemble is given. We investigate the effect and potential of different labelings for such a set-up using per-bit EXIT curves, and exemplify the method for a 16-QAM system, e.g., using set partitioning labelings. A hybrid mapping is proposed, where different sub-blocks use different labelings in order to further optimize the decoding thresholds of tail-biting codes, while the computational complexity overhead through iterative demapping remains small.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube