Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stein Variational Adaptive Importance Sampling (1704.05201v6)

Published 18 Apr 2017 in stat.ML

Abstract: We propose a novel adaptive importance sampling algorithm which incorporates Stein variational gradient decent algorithm (SVGD) with importance sampling (IS). Our algorithm leverages the nonparametric transforms in SVGD to iteratively decrease the KL divergence between our importance proposal and the target distribution. The advantages of this algorithm are twofold: first, our algorithm turns SVGD into a standard IS algorithm, allowing us to use standard diagnostic and analytic tools of IS to evaluate and interpret the results; second, we do not restrict the choice of our importance proposal to predefined distribution families like traditional (adaptive) IS methods. Empirical experiments demonstrate that our algorithm performs well on evaluating partition functions of restricted Boltzmann machines and testing likelihood of variational auto-encoders.

Citations (28)

Summary

We haven't generated a summary for this paper yet.