Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Larger is Better: The Effect of Learning Rates Enjoyed by Stochastic Optimization with Progressive Variance Reduction (1704.04966v1)

Published 17 Apr 2017 in cs.LG, cs.AI, math.OC, and stat.ML

Abstract: In this paper, we propose a simple variant of the original stochastic variance reduction gradient (SVRG), where hereafter we refer to as the variance reduced stochastic gradient descent (VR-SGD). Different from the choices of the snapshot point and starting point in SVRG and its proximal variant, Prox-SVRG, the two vectors of each epoch in VR-SGD are set to the average and last iterate of the previous epoch, respectively. This setting allows us to use much larger learning rates or step sizes than SVRG, e.g., 3/(7L) for VR-SGD vs 1/(10L) for SVRG, and also makes our convergence analysis more challenging. In fact, a larger learning rate enjoyed by VR-SGD means that the variance of its stochastic gradient estimator asymptotically approaches zero more rapidly. Unlike common stochastic methods such as SVRG and proximal stochastic methods such as Prox-SVRG, we design two different update rules for smooth and non-smooth objective functions, respectively. In other words, VR-SGD can tackle non-smooth and/or non-strongly convex problems directly without using any reduction techniques such as quadratic regularizers. Moreover, we analyze the convergence properties of VR-SGD for strongly convex problems, which show that VR-SGD attains a linear convergence rate. We also provide the convergence guarantees of VR-SGD for non-strongly convex problems. Experimental results show that the performance of VR-SGD is significantly better than its counterparts, SVRG and Prox-SVRG, and it is also much better than the best known stochastic method, Katyusha.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)