Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Fooling intersections of low-weight halfspaces (1704.04855v1)

Published 17 Apr 2017 in cs.CC

Abstract: A weight-$t$ halfspace is a Boolean function $f(x)=$sign$(w_1 x_1 + \cdots + w_n x_n - \theta)$ where each $w_i$ is an integer in ${-t,\dots,t}.$ We give an explicit pseudorandom generator that $\delta$-fools any intersection of $k$ weight-$t$ halfspaces with seed length poly$(\log n, \log k,t,1/\delta)$. In particular, our result gives an explicit PRG that fools any intersection of any quasipoly$(n)$ number of halfspaces of any poly$\log(n)$ weight to any $1/$poly$\log(n)$ accuracy using seed length poly$\log(n).$ Prior to this work no explicit PRG with non-trivial seed length was known even for fooling intersections of $n$ weight-1 halfspaces to constant accuracy. The analysis of our PRG fuses techniques from two different lines of work on unconditional pseudorandomness for different kinds of Boolean functions. We extend the approach of Harsha, Klivans and Meka \cite{HKM12} for fooling intersections of regular halfspaces, and combine this approach with results of Bazzi \cite{Bazzi:07} and Razborov \cite{Razborov:09} on bounded independence fooling CNF formulas. Our analysis introduces new coupling-based ingredients into the standard Lindeberg method for establishing quantitative central limit theorems and associated pseudorandomness results.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.