Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stationary Distribution of a Generalized LRU-MRU Content Cache (1704.04849v8)

Published 17 Apr 2017 in cs.PF

Abstract: Many different caching mechanisms have been previously proposed, exploring different insertion and eviction policies and their performance individually and as part of caching networks. We obtain a novel closed-form stationary invariant distribution for a generalization of LRU and MRU caching nodes under a reference Markov model. Numerical comparisons are made with an "Incremental Rank Progress" (IRP a.k.a. CLIMB) and random eviction (a.k.a. random replacement) methods under a steady-state Zipf popularity distribution. The range of cache hit probabilities is smaller under MRU and larger under IRP compared to LRU. We conclude with the invariant distribution for a special case of a random-eviction caching tree-network and associated discussion.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube