Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Approximating the Backbone in the Weighted Maximum Satisfiability Problem (1704.04775v1)

Published 16 Apr 2017 in cs.AI

Abstract: The weighted Maximum Satisfiability problem (weighted MAX-SAT) is a NP-hard problem with numerous applications arising in artificial intelligence. As an efficient tool for heuristic design, the backbone has been applied to heuristics design for many NP-hard problems. In this paper, we investigated the computational complexity for retrieving the backbone in weighted MAX-SAT and developed a new algorithm for solving this problem. We showed that it is intractable to retrieve the full backbone under the assumption that . Moreover, it is intractable to retrieve a fixed fraction of the backbone as well. And then we presented a backbone guided local search (BGLS) with Walksat operator for weighted MAX-SAT. BGLS consists of two phases: the first phase samples the backbone information from local optima and the backbone phase conducts local search under the guideline of backbone. Extensive experimental results on the benchmark showed that BGLS outperforms the existing heuristics in both solution quality and runtime.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.