Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Integrating Scene Text and Visual Appearance for Fine-Grained Image Classification (1704.04613v2)

Published 15 Apr 2017 in cs.CV

Abstract: Text in natural images contains rich semantics that are often highly relevant to objects or scene. In this paper, we focus on the problem of fully exploiting scene text for visual understanding. The main idea is combining word representations and deep visual features into a globally trainable deep convolutional neural network. First, the recognized words are obtained by a scene text reading system. Then, we combine the word embedding of the recognized words and the deep visual features into a single representation, which is optimized by a convolutional neural network for fine-grained image classification. In our framework, the attention mechanism is adopted to reveal the relevance between each recognized word and the given image, which further enhances the recognition performance. We have performed experiments on two datasets: Con-Text dataset and Drink Bottle dataset, that are proposed for fine-grained classification of business places and drink bottles, respectively. The experimental results consistently demonstrate that the proposed method combining textual and visual cues significantly outperforms classification with only visual representations. Moreover, we have shown that the learned representation improves the retrieval performance on the drink bottle images by a large margin, making it potentially useful in product search.

Citations (71)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.