Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

User-transparent Distributed TensorFlow (1704.04560v1)

Published 15 Apr 2017 in cs.DC

Abstract: Deep Learning (DL) algorithms have become the {\em de facto} choice for data analysis. Several DL implementations -- primarily limited to a single compute node -- such as Caffe, TensorFlow, Theano and Torch have become readily available. Distributed DL implementations capable of execution on large scale systems are becoming important to address the computational needs of large data produced by scientific simulations and experiments. Yet, the adoption of distributed DL implementations faces significant impediments: 1) most implementations require DL analysts to modify their code significantly -- which is a show-stopper, 2) several distributed DL implementations are geared towards cloud computing systems -- which is inadequate for execution on massively parallel systems such as supercomputers. This work addresses each of these problems. We provide a distributed memory DL implementation by incorporating required changes in the TensorFlow runtime itself. This dramatically reduces the entry barrier for using a distributed TensorFlow implementation. We use Message Passing Interface (MPI) -- which provides performance portability, especially since MPI specific changes are abstracted from users. Lastly -- and arguably most importantly -- we make our implementation available for broader use, under the umbrella of Machine Learning Toolkit for Extreme Scale (MaTEx) at {\texttt http://hpc.pnl.gov/matex}. We refer to our implementation as MaTEx-TensorFlow.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.