Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

SETH-Based Lower Bounds for Subset Sum and Bicriteria Path (1704.04546v3)

Published 14 Apr 2017 in cs.DS and cs.CC

Abstract: Subset-Sum and k-SAT are two of the most extensively studied problems in computer science, and conjectures about their hardness are among the cornerstones of fine-grained complexity. One of the most intriguing open problems in this area is to base the hardness of one of these problems on the other. Our main result is a tight reduction from k-SAT to Subset-Sum on dense instances, proving that BeLLMan's 1962 pseudo-polynomial $O{*}(T)$-time algorithm for Subset-Sum on $n$ numbers and target $T$ cannot be improved to time $T{1-\varepsilon}\cdot 2{o(n)}$ for any $\varepsilon>0$, unless the Strong Exponential Time Hypothesis (SETH) fails. This is one of the strongest known connections between any two of the core problems of fine-grained complexity. As a corollary, we prove a "Direct-OR" theorem for Subset-Sum under SETH, offering a new tool for proving conditional lower bounds: It is now possible to assume that deciding whether one out of $N$ given instances of Subset-Sum is a YES instance requires time $(N T){1-o(1)}$. As an application of this corollary, we prove a tight SETH-based lower bound for the classical Bicriteria s,t-Path problem, which is extensively studied in Operations Research. We separate its complexity from that of Subset-Sum: On graphs with $m$ edges and edge lengths bounded by $L$, we show that the $O(Lm)$ pseudo-polynomial time algorithm by Joksch from 1966 cannot be improved to $\tilde{O}(L+m)$, in contrast to a recent improvement for Subset Sum (Bringmann, SODA 2017).

Citations (84)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.