Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Control of Asynchronous Imitation Dynamics on Networks (1704.04416v1)

Published 12 Apr 2017 in cs.GT and nlin.AO

Abstract: Imitation is widely observed in populations of decision-making agents. Using our recent convergence results for asynchronous imitation dynamics on networks, we consider how such networks can be efficiently driven to a desired equilibrium state by offering payoff incentives for using a certain strategy, either uniformly or targeted to individuals. In particular, if for each available strategy, agents playing that strategy receive maximum payoff when their neighbors play that same strategy, we show that providing incentives to agents in a network that is at equilibrium will result in convergence to a unique new equilibrium. For the case when a uniform incentive can be offered to all agents, this result allows the computation of the optimal incentive using a binary search algorithm. When incentives can be targeted to individual agents, we propose an algorithm to select which agents should be chosen based on iteratively maximizing a ratio of the number of agents who adopt the desired strategy to the payoff incentive required to get those agents to do so. Simulations demonstrate that the proposed algorithm computes near-optimal targeted payoff incentives for a range of networks and payoff distributions in coordination games.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.