Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Managing Service-Heterogeneity using Osmotic Computing (1704.04213v1)

Published 13 Apr 2017 in cs.DC

Abstract: Computational resource provisioning that is closer to a user is becoming increasingly important, with a rise in the number of devices making continuous service requests and with the significant recent take up of latency-sensitive applications, such as streaming and real-time data processing. Fog computing provides a solution to such types of applications by bridging the gap between the user and public/private cloud infrastructure via the inclusion of a "fog" layer. Such approach is capable of reducing the overall processing latency, but the issues of redundancy, cost-effectiveness in utilizing such computing infrastructure and handling services on the basis of a difference in their characteristics remain. This difference in characteristics of services because of variations in the requirement of computational resources and processes is termed as service heterogeneity. A potential solution to these issues is the use of Osmotic Computing -- a recently introduced paradigm that allows division of services on the basis of their resource usage, based on parameters such as energy, load, processing time on a data center vs. a network edge resource. Service provisioning can then be divided across different layers of a computational infrastructure, from edge devices, in-transit nodes, and a data center, and supported through an Osmotic software layer. In this paper, a fitness-based Osmosis algorithm is proposed to provide support for osmotic computing by making more effective use of existing Fog server resources. The proposed approach is capable of efficiently distributing and allocating services by following the principle of osmosis. The results are presented using numerical simulations demonstrating gains in terms of lower allocation time and a higher probability of services being handled with high resource utilization.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube