Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Infinite Sparse Structured Factor Analysis (1704.04031v1)

Published 13 Apr 2017 in stat.ML

Abstract: Matrix factorisation methods decompose multivariate observations as linear combinations of latent feature vectors. The Indian Buffet Process (IBP) provides a way to model the number of latent features required for a good approximation in terms of regularised reconstruction error. Previous work has focussed on latent feature vectors with independent entries. We extend the model to include nondiagonal latent covariance structures representing characteristics such as smoothness. This is done by . Using simulations we demonstrate that under appropriate conditions a smoothness prior helps to recover the true latent features, while denoising more accurately. We demonstrate our method on a real neuroimaging dataset, where computational tractability is a sufficient challenge that the efficient strategy presented here is essential.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.