Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient and Effective Tail Latency Minimization in Multi-Stage Retrieval Systems (1704.03970v2)

Published 13 Apr 2017 in cs.IR

Abstract: Scalable web search systems typically employ multi-stage retrieval architectures, where an initial stage generates a set of candidate documents that are then pruned and re-ranked. Since subsequent stages typically exploit a multitude of features of varying costs using machine-learned models, reducing the number of documents that are considered at each stage improves latency. In this work, we propose and validate a unified framework that can be used to predict a wide range of performance-sensitive parameters which minimize effectiveness loss, while simultaneously minimizing query latency, across all stages of a multi-stage search architecture. Furthermore, our framework can be easily applied in large-scale IR systems, can be trained without explicitly requiring relevance judgments, and can target a variety of different efficiency-effectiveness trade-offs, making it well suited to a wide range of search scenarios. Our results show that we can reliably predict a number of different parameters on a per-query basis, while simultaneously detecting and minimizing the likelihood of tail-latency queries that exceed a pre-specified performance budget. As a proof of concept, we use the prediction framework to help alleviate the problem of tail-latency queries in early stage retrieval. On the standard ClueWeb09B collection and 31k queries, we show that our new hybrid system can reliably achieve a maximum query time of 200 ms with a 99.99% response time guarantee without a significant loss in overall effectiveness. The solutions presented are practical, and can easily be used in large-scale distributed search engine deployments with a small amount of additional overhead.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Joel Mackenzie (11 papers)
  2. J. Shane Culpepper (20 papers)
  3. Roi Blanco (8 papers)
  4. Matt Crane (2 papers)
  5. Charles L. A. Clarke (30 papers)
  6. Jimmy Lin (208 papers)
Citations (52)

Summary

We haven't generated a summary for this paper yet.