Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Quantitative Hardness of CVP (1704.03928v2)

Published 12 Apr 2017 in cs.CC and cs.DS

Abstract: $ \newcommand{\eps}{\varepsilon} \newcommand{\problem}[1]{\ensuremath{\mathrm{#1}} } \newcommand{\CVP}{\problem{CVP}} \newcommand{\SVP}{\problem{SVP}} \newcommand{\CVPP}{\problem{CVPP}} \newcommand{\ensuremath}[1]{#1} $For odd integers $p \geq 1$ (and $p = \infty$), we show that the Closest Vector Problem in the $\ell_p$ norm ($\CVP_p$) over rank $n$ lattices cannot be solved in $2{(1-\eps) n}$ time for any constant $\eps > 0$ unless the Strong Exponential Time Hypothesis (SETH) fails. We then extend this result to "almost all" values of $p \geq 1$, not including the even integers. This comes tantalizingly close to settling the quantitative time complexity of the important special case of $\CVP_2$ (i.e., $\CVP$ in the Euclidean norm), for which a $2{n +o(n)}$-time algorithm is known. In particular, our result applies for any $p = p(n) \neq 2$ that approaches $2$ as $n \to \infty$. We also show a similar SETH-hardness result for $\SVP_\infty$; hardness of approximating $\CVP_p$ to within some constant factor under the so-called Gap-ETH assumption; and other quantitative hardness results for $\CVP_p$ and $\CVPP_p$ for any $1 \leq p < \infty$ under different assumptions.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.