On the Quantitative Hardness of CVP (1704.03928v2)
Abstract: $ \newcommand{\eps}{\varepsilon} \newcommand{\problem}[1]{\ensuremath{\mathrm{#1}} } \newcommand{\CVP}{\problem{CVP}} \newcommand{\SVP}{\problem{SVP}} \newcommand{\CVPP}{\problem{CVPP}} \newcommand{\ensuremath}[1]{#1} $For odd integers $p \geq 1$ (and $p = \infty$), we show that the Closest Vector Problem in the $\ell_p$ norm ($\CVP_p$) over rank $n$ lattices cannot be solved in $2{(1-\eps) n}$ time for any constant $\eps > 0$ unless the Strong Exponential Time Hypothesis (SETH) fails. We then extend this result to "almost all" values of $p \geq 1$, not including the even integers. This comes tantalizingly close to settling the quantitative time complexity of the important special case of $\CVP_2$ (i.e., $\CVP$ in the Euclidean norm), for which a $2{n +o(n)}$-time algorithm is known. In particular, our result applies for any $p = p(n) \neq 2$ that approaches $2$ as $n \to \infty$. We also show a similar SETH-hardness result for $\SVP_\infty$; hardness of approximating $\CVP_p$ to within some constant factor under the so-called Gap-ETH assumption; and other quantitative hardness results for $\CVP_p$ and $\CVPP_p$ for any $1 \leq p < \infty$ under different assumptions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.