Emergent Mind

Robustly Learning a Gaussian: Getting Optimal Error, Efficiently

(1704.03866)
Published Apr 12, 2017 in cs.DS , cs.IT , cs.LG , math.IT , math.ST , stat.ML , and stat.TH

Abstract

We study the fundamental problem of learning the parameters of a high-dimensional Gaussian in the presence of noise -- where an $\varepsilon$-fraction of our samples were chosen by an adversary. We give robust estimators that achieve estimation error $O(\varepsilon)$ in the total variation distance, which is optimal up to a universal constant that is independent of the dimension. In the case where just the mean is unknown, our robustness guarantee is optimal up to a factor of $\sqrt{2}$ and the running time is polynomial in $d$ and $1/\epsilon$. When both the mean and covariance are unknown, the running time is polynomial in $d$ and quasipolynomial in $1/\varepsilon$. Moreover all of our algorithms require only a polynomial number of samples. Our work shows that the same sorts of error guarantees that were established over fifty years ago in the one-dimensional setting can also be achieved by efficient algorithms in high-dimensional settings.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.