Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic Signaling Games with Quadratic Criteria under Nash and Stackelberg Equilibria (1704.03816v6)

Published 12 Apr 2017 in math.OC, cs.IT, and math.IT

Abstract: This paper considers dynamic (multi-stage) signaling games involving an encoder and a decoder who have subjective models on the cost functions. We consider both Nash (simultaneous-move) and Stackelberg (leader-follower) equilibria of dynamic signaling games under quadratic criteria. For the multi-stage scalar cheap talk, we show that the final stage equilibrium is always quantized and under further conditions the equilibria for all time stages must be quantized. In contrast, the Stackelberg equilibria are always fully revealing. In the multi-stage signaling game where the transmission of a Gauss-Markov source over a memoryless Gaussian channel is considered, affine policies constitute an invariant subspace under best response maps for Nash equilibria; whereas the Stackelberg equilibria always admit linear policies for scalar sources but such policies may be non-linear for multi-dimensional sources. We obtain an explicit recursion for optimal linear encoding policies for multi-dimensional sources, and derive conditions under which Stackelberg equilibria are informative.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.