Papers
Topics
Authors
Recent
2000 character limit reached

Deep Extreme Multi-label Learning (1704.03718v4)

Published 12 Apr 2017 in cs.LG

Abstract: Extreme multi-label learning (XML) or classification has been a practical and important problem since the boom of big data. The main challenge lies in the exponential label space which involves $2L$ possible label sets especially when the label dimension $L$ is huge, e.g., in millions for Wikipedia labels. This paper is motivated to better explore the label space by originally establishing an explicit label graph. In the meanwhile, deep learning has been widely studied and used in various classification problems including multi-label classification, however it has not been properly introduced to XML, where the label space can be as large as in millions. In this paper, we propose a practical deep embedding method for extreme multi-label classification, which harvests the ideas of non-linear embedding and graph priors-based label space modeling simultaneously. Extensive experiments on public datasets for XML show that our method performs competitive against state-of-the-art result.

Citations (116)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.