Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fully Dynamic Approximate Maximum Matching and Minimum Vertex Cover in $O(\log^3 n)$ Worst Case Update Time (1704.02844v1)

Published 10 Apr 2017 in cs.DS

Abstract: We consider the problem of maintaining an approximately maximum (fractional) matching and an approximately minimum vertex cover in a dynamic graph. Starting with the seminal paper by Onak and Rubinfeld [STOC 2010], this problem has received significant attention in recent years. There remains, however, a polynomial gap between the best known worst case update time and the best known amortised update time for this problem, even after allowing for randomisation. Specifically, Bernstein and Stein [ICALP 2015, SODA 2016] have the best known worst case update time. They present a deterministic data structure with approximation ratio $(3/2+\epsilon)$ and worst case update time $O(m{1/4}/\epsilon2)$, where $m$ is the number of edges in the graph. In recent past, Gupta and Peng [FOCS 2013] gave a deterministic data structure with approximation ratio $(1+\epsilon)$ and worst case update time $O(\sqrt{m}/\epsilon2)$. No known randomised data structure beats the worst case update times of these two results. In contrast, the paper by Onak and Rubinfeld [STOC 2010] gave a randomised data structure with approximation ratio $O(1)$ and amortised update time $O(\log2 n)$, where $n$ is the number of nodes in the graph. This was later improved by Baswana, Gupta and Sen [FOCS 2011] and Solomon [FOCS 2016], leading to a randomised date structure with approximation ratio $2$ and amortised update time $O(1)$. We bridge the polynomial gap between the worst case and amortised update times for this problem, without using any randomisation. We present a deterministic data structure with approximation ratio $(2+\epsilon)$ and worst case update time $O(\log3 n)$, for all sufficiently small constants $\epsilon$.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.