Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Comparative Study for Predicting Heart Diseases Using Data Mining Classification Methods (1704.02799v1)

Published 10 Apr 2017 in cs.CY, cs.LG, and stat.ML

Abstract: Improving the precision of heart diseases detection has been investigated by many researchers in the literature. Such improvement induced by the overwhelming health care expenditures and erroneous diagnosis. As a result, various methodologies have been proposed to analyze the disease factors aiming to decrease the physicians practice variation and reduce medical costs and errors. In this paper, our main motivation is to develop an effective intelligent medical decision support system based on data mining techniques. In this context, five data mining classifying algorithms, with large datasets, have been utilized to assess and analyze the risk factors statistically related to heart diseases in order to compare the performance of the implemented classifiers (e.g., Na\"ive Bayes, Decision Tree, Discriminant, Random Forest, and Support Vector Machine). To underscore the practical viability of our approach, the selected classifiers have been implemented using MATLAB tool with two datasets. Results of the conducted experiments showed that all classification algorithms are predictive and can give relatively correct answer. However, the decision tree outperforms other classifiers with an accuracy rate of 99.0% followed by Random forest. That is the case because both of them have relatively same mechanism but the Random forest can build ensemble of decision tree. Although ensemble learning has been proved to produce superior results, but in our case the decision tree has outperformed its ensemble version.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.