Papers
Topics
Authors
Recent
2000 character limit reached

Balanced $k$-Center Clustering When $k$ Is A Constant

Published 8 Apr 2017 in cs.CG | (1704.02515v1)

Abstract: The problem of constrained $k$-center clustering has attracted significant attention in the past decades. In this paper, we study balanced $k$-center cluster where the size of each cluster is constrained by the given lower and upper bounds. The problem is motivated by the applications in processing and analyzing large-scale data in high dimension. We provide a simple nearly linear time $4$-approximation algorithm when the number of clusters $k$ is assumed to be a constant. Comparing with existing method, our algorithm improves the approximation ratio and significantly reduces the time complexity. Moreover, our result can be easily extended to any metric space.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.