Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Vectorization of Hybrid Breadth First Search on the Intel Xeon Phi (1704.02259v2)

Published 7 Apr 2017 in cs.DC

Abstract: The Breadth-First Search (BFS) algorithm is an important building block for graph analysis of large datasets. The BFS parallelisation has been shown to be challenging because of its inherent characteristics, including irregular memory access patterns, data dependencies and workload imbalance, that limit its scalability. We investigate the optimisation and vectorisation of the hybrid BFS (a combination of top-down and bottom-up approaches for BFS) on the Xeon Phi, which has advanced vector processing capabilities. The results show that our new implementation improves by 33\%, for a one million vertices graph, compared to the state-of-the-art.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.