Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

New Subquadratic Approximation Algorithms for the Girth (1704.02178v1)

Published 7 Apr 2017 in cs.DS

Abstract: We consider the problem of approximating the girth, $g$, of an unweighted and undirected graph $G=(V,E)$ with $n$ nodes and $m$ edges. A seminal result of Itai and Rodeh [SICOMP'78] gave an additive $1$-approximation in $O(n2)$ time, and the main open question is thus how well we can do in subquadratic time. In this paper we present two main results. The first is a $(1+\varepsilon,O(1))$-approximation in truly subquadratic time. Specifically, for any $k\ge 2$ our algorithm returns a cycle of length $2\lceil g/2\rceil+2\left\lceil\frac{g}{2(k-1)}\right\rceil$ in $\tilde{O}(n{2-1/k})$ time. This generalizes the results of Lingas and Lundell [IPL'09] who showed it for the special case of $k=2$ and Roditty and Vassilevska Williams [SODA'12] who showed it for $k=3$. Our second result is to present an $O(1)$-approximation running in $O(n{1+\varepsilon})$ time for any $\varepsilon > 0$. Prior to this work the fastest constant-factor approximation was the $\tilde{O}(n{3/2})$ time $8/3$-approximation of Lingas and Lundell [IPL'09] using the algorithm corresponding to the special case $k=2$ of our first result.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.