Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Detecting confounding in multivariate linear models via spectral analysis (1704.01430v1)

Published 5 Apr 2017 in stat.ML

Abstract: We study a model where one target variable Y is correlated with a vector X:=(X_1,...,X_d) of predictor variables being potential causes of Y. We describe a method that infers to what extent the statistical dependences between X and Y are due to the influence of X on Y and to what extent due to a hidden common cause (confounder) of X and Y. The method relies on concentration of measure results for large dimensions d and an independence assumption stating that, in the absence of confounding, the vector of regression coefficients describing the influence of each X on Y typically has `generic orientation' relative to the eigenspaces of the covariance matrix of X. For the special case of a scalar confounder we show that confounding typically spoils this generic orientation in a characteristic way that can be used to quantitatively estimate the amount of confounding.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.