Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A correlation game for unsupervised learning yields computational interpretations of Hebbian excitation, anti-Hebbian inhibition, and synapse elimination (1704.00646v1)

Published 3 Apr 2017 in cs.NE and q-bio.NC

Abstract: Much has been learned about plasticity of biological synapses from empirical studies. Hebbian plasticity is driven by correlated activity of presynaptic and postsynaptic neurons. Synapses that converge onto the same neuron often behave as if they compete for a fixed resource; some survive the competition while others are eliminated. To provide computational interpretations of these aspects of synaptic plasticity, we formulate unsupervised learning as a zero-sum game between Hebbian excitation and anti-Hebbian inhibition in a neural network model. The game formalizes the intuition that Hebbian excitation tries to maximize correlations of neurons with their inputs, while anti-Hebbian inhibition tries to decorrelate neurons from each other. We further include a model of synaptic competition, which enables a neuron to eliminate all connections except those from its most strongly correlated inputs. Through empirical studies, we show that this facilitates the learning of sensory features that resemble parts of objects.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.