Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Local Guarantees in Graph Cuts and Clustering (1704.00355v1)

Published 2 Apr 2017 in cs.DS

Abstract: Correlation Clustering is an elegant model that captures fundamental graph cut problems such as Min $s-t$ Cut, Multiway Cut, and Multicut, extensively studied in combinatorial optimization. Here, we are given a graph with edges labeled $+$ or $-$ and the goal is to produce a clustering that agrees with the labels as much as possible: $+$ edges within clusters and $-$ edges across clusters. The classical approach towards Correlation Clustering (and other graph cut problems) is to optimize a global objective. We depart from this and study local objectives: minimizing the maximum number of disagreements for edges incident on a single node, and the analogous max min agreements objective. This naturally gives rise to a family of basic min-max graph cut problems. A prototypical representative is Min Max $s-t$ Cut: find an $s-t$ cut minimizing the largest number of cut edges incident on any node. We present the following results: $(1)$ an $O(\sqrt{n})$-approximation for the problem of minimizing the maximum total weight of disagreement edges incident on any node (thus providing the first known approximation for the above family of min-max graph cut problems), $(2)$ a remarkably simple $7$-approximation for minimizing local disagreements in complete graphs (improving upon the previous best known approximation of $48$), and $(3)$ a $1/(2+\varepsilon)$-approximation for maximizing the minimum total weight of agreement edges incident on any node, hence improving upon the $1/(4+\varepsilon)$-approximation that follows from the study of approximate pure Nash equilibria in cut and party affiliation games.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.