Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Online Geographical Load Balancing for Mobile Edge Computing with Energy Harvesting (1704.00107v3)

Published 1 Apr 2017 in cs.IT and math.IT

Abstract: Mobile Edge Computing (MEC) (a.k.a. fog computing) has recently emerged to enable low-latency and location-aware data processing at the edge of mobile networks. Since providing grid power supply in support of MEC can be costly and even infeasible in some scenarios, on-site renewable energy is mandated as a major or even sole power supply. Nonetheless, the high intermittency and unpredictability of energy harvesting creates many new challenges of performing effective MEC. In this paper, we develop an algorithm called GLOBE that performs joint geographical load balancing (GLB) and admission control for optimizing the system performance of a network of MEC-enabled and energy harvesting-powered base stations. By leveraging and extending the Lyapunov optimization with perturbation technique, GLOBE operates online without requiring future system information and addresses significant challenges caused by battery state dynamics and energy causality constraints. Moreover, GLOBE works in a distributed manner, which makes our algorithm scalable to large networks. We prove that GLOBE achieves a close-to-optimal system performance compared to the offline algorithm that knows full future information, and present a critical tradeoff between battery capacity and system performance. Simulation results validate our analysis and demonstrate the superior performance of GLOBE compared to benchmark algorithms.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.