Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Simple and Efficient Budget Feasible Mechanisms for Monotone Submodular Valuations (1703.10681v1)

Published 30 Mar 2017 in cs.GT

Abstract: We study the problem of a budget limited buyer who wants to buy a set of items, each from a different seller, to maximize her value. The budget feasible mechanism design problem aims to design a mechanism which incentivizes the sellers to truthfully report their cost, and maximizes the buyer's value while guaranteeing that the total payment does not exceed her budget. Such budget feasible mechanisms can model a buyer in a crowdsourcing market interested in recruiting a set of workers (sellers) to accomplish a task for her. This budget feasible mechanism design problem was introduced by Singer in 2010. There have been a number of improvements on the approximation guarantee of such mechanisms since then. We consider the general case where the buyer's valuation is a monotone submodular function. We offer two general frameworks for simple mechanisms, and by combining these frameworks, we significantly improve on the best known results for this problem, while also simplifying the analysis. For example, we improve the approximation guarantee for the general monotone submodular case from 7.91 to 5; and for the case of large markets (where each individual item has negligible value) from 3 to 2.58. More generally, given an $r$ approximation algorithm for the optimization problem (ignoring incentives), our mechanism is a $r+1$ approximation mechanism for large markets, an improvement from $2r2$. We also provide a similar parameterized mechanism without the large market assumption, where we achieve a $4r+1$ approximation guarantee.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)