Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Simple and Efficient Budget Feasible Mechanisms for Monotone Submodular Valuations (1703.10681v1)

Published 30 Mar 2017 in cs.GT

Abstract: We study the problem of a budget limited buyer who wants to buy a set of items, each from a different seller, to maximize her value. The budget feasible mechanism design problem aims to design a mechanism which incentivizes the sellers to truthfully report their cost, and maximizes the buyer's value while guaranteeing that the total payment does not exceed her budget. Such budget feasible mechanisms can model a buyer in a crowdsourcing market interested in recruiting a set of workers (sellers) to accomplish a task for her. This budget feasible mechanism design problem was introduced by Singer in 2010. There have been a number of improvements on the approximation guarantee of such mechanisms since then. We consider the general case where the buyer's valuation is a monotone submodular function. We offer two general frameworks for simple mechanisms, and by combining these frameworks, we significantly improve on the best known results for this problem, while also simplifying the analysis. For example, we improve the approximation guarantee for the general monotone submodular case from 7.91 to 5; and for the case of large markets (where each individual item has negligible value) from 3 to 2.58. More generally, given an $r$ approximation algorithm for the optimization problem (ignoring incentives), our mechanism is a $r+1$ approximation mechanism for large markets, an improvement from $2r2$. We also provide a similar parameterized mechanism without the large market assumption, where we achieve a $4r+1$ approximation guarantee.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.