Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Priv'IT: Private and Sample Efficient Identity Testing (1703.10127v3)

Published 29 Mar 2017 in cs.DS, cs.CR, cs.IT, cs.LG, math.IT, math.ST, and stat.TH

Abstract: We develop differentially private hypothesis testing methods for the small sample regime. Given a sample $\cal D$ from a categorical distribution $p$ over some domain $\Sigma$, an explicitly described distribution $q$ over $\Sigma$, some privacy parameter $\varepsilon$, accuracy parameter $\alpha$, and requirements $\beta_{\rm I}$ and $\beta_{\rm II}$ for the type I and type II errors of our test, the goal is to distinguish between $p=q$ and $d_{\rm{TV}}(p,q) \geq \alpha$. We provide theoretical bounds for the sample size $|{\cal D}|$ so that our method both satisfies $(\varepsilon,0)$-differential privacy, and guarantees $\beta_{\rm I}$ and $\beta_{\rm II}$ type I and type II errors. We show that differential privacy may come for free in some regimes of parameters, and we always beat the sample complexity resulting from running the $\chi2$-test with noisy counts, or standard approaches such as repetition for endowing non-private $\chi2$-style statistics with differential privacy guarantees. We experimentally compare the sample complexity of our method to that of recently proposed methods for private hypothesis testing.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.