Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Autonomous Recharging and Flight Mission Planning for Battery-operated Autonomous Drones (1703.10049v5)

Published 29 Mar 2017 in cs.RO and cs.DS

Abstract: Unmanned aerial vehicles (UAVs), commonly known as drones, are being increasingly deployed throughout the globe as a means to streamline monitoring, inspection, mapping, and logistic routines. When dispatched on autonomous missions, drones require an intelligent decision-making system for trajectory planning and tour optimization. Given the limited capacity of their onboard batteries, a key design challenge is to ensure the underlying algorithms can efficiently optimize the mission objectives along with recharging operations during long-haul flights. With this in view, the present work undertakes a comprehensive study on automated tour management systems for an energy-constrained drone: (1) We construct a machine learning model that estimates the energy expenditure of typical multi-rotor drones while accounting for real-world aspects and extrinsic meteorological factors. (2) Leveraging this model, the joint program of flight mission planning and recharging optimization is formulated as a multi-criteria Asymmetric Traveling Salesman Problem (ATSP), wherein a drone seeks for the time-optimal energy-feasible tour that visits all the target sites and refuels whenever necessary. (3) We devise an efficient approximation algorithm with provable worst-case performance guarantees and implement it in a drone management system, which supports real-time flight path tracking and re-computation in dynamic environments. (4) The effectiveness and practicality of the proposed approach are validated through extensive numerical simulations as well as real-world experiments.

Citations (87)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com