Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Question Answering from Unstructured Text by Retrieval and Comprehension (1703.08885v1)

Published 26 Mar 2017 in cs.CL

Abstract: Open domain Question Answering (QA) systems must interact with external knowledge sources, such as web pages, to find relevant information. Information sources like Wikipedia, however, are not well structured and difficult to utilize in comparison with Knowledge Bases (KBs). In this work we present a two-step approach to question answering from unstructured text, consisting of a retrieval step and a comprehension step. For comprehension, we present an RNN based attention model with a novel mixture mechanism for selecting answers from either retrieved articles or a fixed vocabulary. For retrieval we introduce a hand-crafted model and a neural model for ranking relevant articles. We achieve state-of-the-art performance on W IKI M OVIES dataset, reducing the error by 40%. Our experimental results further demonstrate the importance of each of the introduced components.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.