Multi-View Deep Learning for Consistent Semantic Mapping with RGB-D Cameras (1703.08866v2)
Abstract: Visual scene understanding is an important capability that enables robots to purposefully act in their environment. In this paper, we propose a novel approach to object-class segmentation from multiple RGB-D views using deep learning. We train a deep neural network to predict object-class semantics that is consistent from several view points in a semi-supervised way. At test time, the semantics predictions of our network can be fused more consistently in semantic keyframe maps than predictions of a network trained on individual views. We base our network architecture on a recent single-view deep learning approach to RGB and depth fusion for semantic object-class segmentation and enhance it with multi-scale loss minimization. We obtain the camera trajectory using RGB-D SLAM and warp the predictions of RGB-D images into ground-truth annotated frames in order to enforce multi-view consistency during training. At test time, predictions from multiple views are fused into keyframes. We propose and analyze several methods for enforcing multi-view consistency during training and testing. We evaluate the benefit of multi-view consistency training and demonstrate that pooling of deep features and fusion over multiple views outperforms single-view baselines on the NYUDv2 benchmark for semantic segmentation. Our end-to-end trained network achieves state-of-the-art performance on the NYUDv2 dataset in single-view segmentation as well as multi-view semantic fusion.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.