Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimization of Vehicle Connections in V2V-based Cooperative Localization (1703.08818v2)

Published 26 Mar 2017 in cs.SY

Abstract: Cooperative map matching (CMM) uses the Global Navigation Satellite System (GNSS) positioning of a group of vehicles to improve the standalone localization accuracy. It has been shown to reduce GNSS error from several meters to sub-meter level by matching the biased GNSS positioning of four vehicles to a digital map with road constraints in our previous work. While further error reduction is expected by increasing the number of participating vehicles, fundamental questions on how the vehicle membership of the CMM affects the performance of the GNSS-based localization results need to be addressed to provide guidelines for design and optimization of the vehicle network. The quantitative relationship between the estimation error and the road constraints has to be systematically investigated to provide insights. In this work, a theoretical study is presented that aims at developing a framework for quantitatively evaluating effects of the road constraints on the CMM accuracy and for eventual optimization of the CMM network. More specifically, a closed form expression of the CMM error in terms of the road angles and GNSS error is first derived based on a simple CMM rule. Then a Branch and Bound algorithm and a Cross Entropy method are developed to minimize this error by selecting the optimal group of vehicles under two different assumptions about the GNSS error variance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.