Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revenue Maximization with an Uncertainty-Averse Buyer (1703.08607v3)

Published 24 Mar 2017 in cs.GT

Abstract: Most work in mechanism design assumes that buyers are risk neutral; some considers risk aversion arising due to a non-linear utility for money. Yet behavioral studies have established that real agents exhibit risk attitudes which cannot be captured by any expected utility model. We initiate the study of revenue-optimal mechanisms under buyer behavioral models beyond expected utility theory. We adopt a model from prospect theory which arose to explain these discrepancies and incorporates agents under-weighting uncertain outcomes. In our model, an event occurring with probability $x < 1$ is worth strictly less to the agent than $x$ times the value of the event when it occurs with certainty. In contrast to the risk-neutral setting, the optimal mechanism may be randomized and appears challenging to find, even for a single buyer and a single item for sale. Nevertheless, we give a characterization of the optimal mechanism which enables positive approximation results. In particular, we show that under a reasonable bounded-risk-aversion assumption, posted pricing obtains a constant approximation. Notably, this result is "risk-robust" in that it does not depend on the details of the buyer's risk attitude. Finally, we examine a dynamic setting in which the buyer is uncertain about his future value. In contrast to positive results for a risk-neutral buyer, we show that the buyer's risk aversion may prevent the seller from approximating the optimal revenue in a risk-robust manner.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shuchi Chawla (50 papers)
  2. Kira Goldner (15 papers)
  3. J. Benjamin Miller (4 papers)
  4. Emmanouil Pountourakis (20 papers)

Summary

We haven't generated a summary for this paper yet.