Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Augmented Ensemble MCMC sampling in Factorial Hidden Markov Models (1703.08520v2)

Published 24 Mar 2017 in stat.CO, stat.ME, and stat.ML

Abstract: Bayesian inference for factorial hidden Markov models is challenging due to the exponentially sized latent variable space. Standard Monte Carlo samplers can have difficulties effectively exploring the posterior landscape and are often restricted to exploration around localised regions that depend on initialisation. We introduce a general purpose ensemble Markov Chain Monte Carlo (MCMC) technique to improve on existing poorly mixing samplers. This is achieved by combining parallel tempering and an auxiliary variable scheme to exchange information between the chains in an efficient way. The latter exploits a genetic algorithm within an augmented Gibbs sampler. We compare our technique with various existing samplers in a simulation study as well as in a cancer genomics application, demonstrating the improvements obtained by our augmented ensemble approach.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.