Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimal lower bounds for universal relation, samplers, and finding duplicates (1703.08139v1)

Published 23 Mar 2017 in cs.CC and cs.DS

Abstract: In the communication problem $\mathbf{UR}$ (universal relation) [KRW95], Alice and Bob respectively receive $x$ and $y$ in ${0,1}n$ with the promise that $x\neq y$. The last player to receive a message must output an index $i$ such that $x_i\neq y_i$. We prove that the randomized one-way communication complexity of this problem in the public coin model is exactly $\Theta(\min{n, \log(1/\delta)\log2(\frac{n}{\log(1/\delta)})})$ bits for failure probability $\delta$. Our lower bound holds even if promised $\mathop{support}(y)\subset \mathop{support}(x)$. As a corollary, we obtain optimal lower bounds for $\ell_p$-sampling in strict turnstile streams for $0\le p < 2$, as well as for the problem of finding duplicates in a stream. Our lower bounds do not need to use large weights, and hold even if it is promised that $x\in{0,1}n$ at all points in the stream. Our lower bound demonstrates that any algorithm $\mathcal{A}$ solving sampling problems in turnstile streams in low memory can be used to encode subsets of $[n]$ of certain sizes into a number of bits below the information theoretic minimum. Our encoder makes adaptive queries to $\mathcal{A}$ throughout its execution, but done carefully so as to not violate correctness. This is accomplished by injecting random noise into the encoder's interactions with $\mathcal{A}$, which is loosely motivated by techniques in differential privacy. Our correctness analysis involves understanding the ability of $\mathcal{A}$ to correctly answer adaptive queries which have positive but bounded mutual information with $\mathcal{A}$'s internal randomness, and may be of independent interest in the newly emerging area of adaptive data analysis with a theoretical computer science lens.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com