Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Can you tell where in India I am from? Comparing humans and computers on fine-grained race face classification (1703.07595v2)

Published 22 Mar 2017 in cs.CV

Abstract: Faces form the basis for a rich variety of judgments in humans, yet the underlying features remain poorly understood. Although fine-grained distinctions within a race might more strongly constrain possible facial features used by humans than in case of coarse categories such as race or gender, such fine grained distinctions are relatively less studied. Fine-grained race classification is also interesting because even humans may not be perfectly accurate on these tasks. This allows us to compare errors made by humans and machines, in contrast to standard object detection tasks where human performance is nearly perfect. We have developed a novel face database of close to 1650 diverse Indian faces labeled for fine-grained race (South vs North India) as well as for age, weight, height and gender. We then asked close to 130 human subjects who were instructed to categorize each face as belonging toa Northern or Southern state in India. We then compared human performance on this task with that of computational models trained on the ground-truth labels. Our main results are as follows: (1) Humans are highly consistent (average accuracy: 63.6%), with some faces being consistently classified with > 90% accuracy and others consistently misclassified with < 30% accuracy; (2) Models trained on ground-truth labels showed slightly worse performance (average accuracy: 62%) but showed higher accuracy (72.2%) on faces classified with > 80% accuracy by humans. This was true for models trained on simple spatial and intensity measurements extracted from faces as well as deep neural networks trained on race or gender classification; (3) Using overcomplete banks of features derived from each face part, we found that mouth shape was the single largest contributor towards fine-grained race classification, whereas distances between face parts was the strongest predictor of gender.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)