Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MopEye: Opportunistic Monitoring of Per-app Mobile Network Performance (1703.07551v2)

Published 22 Mar 2017 in cs.NI

Abstract: Crowdsourcing mobile user's network performance has become an effective way of understanding and improving mobile network performance and user quality-of-experience. However, the current measurement method is still based on the landline measurement paradigm in which a measurement app measures the path to fixed (measurement or web) servers. In this work, we introduce a new paradigm of measuring per-app mobile network performance. We design and implement MopEye, an Android app to measure network round-trip delay for each app whenever there is app traffic. This opportunistic measurement can be conducted automatically without users intervention. Therefore, it can facilitate a large-scale and long-term crowdsourcing of mobile network performance. In the course of implementing MopEye, we have overcome a suite of challenges to make the continuous latency monitoring lightweight and accurate. We have deployed MopEye to Google Play for an IRB-approved crowdsourcing study in a period of ten months, which obtains over five million measurements from 6,266 Android apps on 2,351 smartphones. The analysis reveals a number of new findings on the per-app network performance and mobile DNS performance.

Citations (21)

Summary

We haven't generated a summary for this paper yet.