Papers
Topics
Authors
Recent
Search
2000 character limit reached

Decomposition techniques applied to the Clique-Stable set Separation problem

Published 21 Mar 2017 in math.CO and cs.DM | (1703.07106v2)

Abstract: In a graph, a Clique-Stable Set separator (CS-separator) is a family $\mathcal{C}$ of cuts (bipartitions of the vertex set) such that for every clique $K$ and every stable set $S$ with $K \cap S = \emptyset$, there exists a cut $( W,W')$ in $\mathcal{C}$ such that $K \subseteq W$ and $S \subseteq W'$. Starting from a question concerning extended formulations of the Stable Set polytope and a related complexity communication problem, Yannakakis [17] asked in 1991 the following questions: does every graph admit a polynomial-size CS-separator? If not, does every perfect graph do? Several positive and negative results related to this question were given recently. Here we show how graph decomposition can be used to prove that a class of graphs admits a polynomial CS-separator. We apply this method to apple-free graphs and cap-free graphs.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.