Papers
Topics
Authors
Recent
2000 character limit reached

On the Use of Default Parameter Settings in the Empirical Evaluation of Classification Algorithms (1703.06777v1)

Published 20 Mar 2017 in cs.LG and stat.ML

Abstract: We demonstrate that, for a range of state-of-the-art machine learning algorithms, the differences in generalisation performance obtained using default parameter settings and using parameters tuned via cross-validation can be similar in magnitude to the differences in performance observed between state-of-the-art and uncompetitive learning systems. This means that fair and rigorous evaluation of new learning algorithms requires performance comparison against benchmark methods with best-practice model selection procedures, rather than using default parameter settings. We investigate the sensitivity of three key machine learning algorithms (support vector machine, random forest and rotation forest) to their default parameter settings, and provide guidance on determining sensible default parameter values for implementations of these algorithms. We also conduct an experimental comparison of these three algorithms on 121 classification problems and find that, perhaps surprisingly, rotation forest is significantly more accurate on average than both random forest and a support vector machine.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.