Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Multi-Dimensional Auction Mechanisms for Crowdsourced Mobile Video Streaming (1703.06648v2)

Published 20 Mar 2017 in cs.NI

Abstract: Crowdsourced mobile video streaming enables nearby mobile video users to aggregate network resources to improve their video streaming performances. However, users are often selfish and may not be willing to cooperate without proper incentives. Designing an incentive mechanism for such a scenario is challenging due to the users' asynchronous downloading behaviors and their private valuations for multi-bitrate coded videos. In this work, we propose both single-object and multi-object multi-dimensional auction mechanisms, through which users sell the opportunities for downloading single and multiple video segments with multiple bitrates, respectively. Both auction mechanisms can achieves truthfulness (i.e, truthful private information revelation) and efficiency (i.e., social welfare maximization). Simulations with real traces show that crowdsourced mobile streaming facilitated by the auction mechanisms outperforms noncooperative stream ing by 48.6% (on average) in terms of social welfare. To evaluate the real-world performance, we also construct a demo system for crowdsourced mobile streaming and implement our proposed auction mechanism. Experiments over the demo system further show that those users who provide resources to others and those users who receive helps can increase their welfares by 15.5% and 35.4% (on average) via cooperation, respectively.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.