Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Helmholtz free energy for finite abstract simplicial complexes (1703.06549v1)

Published 20 Mar 2017 in math.CO, cs.DM, and math.GN

Abstract: We prove a Gauss-Bonnet formula X(G) = sum_x K(x), where K(x)=(-1)dim(x) (1-X(S(x))) is a curvature of a vertex x with unit sphere S(x) in the Barycentric refinement G1 of a simplicial complex G. K(x) is dual to (-1)dim(x) for which Gauss-Bonnet is the definition of Euler characteristic X. Because the connection Laplacian L'=1+A' of G is unimodular, where A' is the adjacency matrix of of the connection graph G', the Green function values g(x,y) = (1+A')-1_xy are integers and 1-X(S(x))=g(x,x). Gauss-Bonnet for K+ reads therefore as str(g)=X(G), where str is the super trace. As g is a time-discrete heat kernel, this is a cousin to McKean-Singer str(exp(-Lt)) = X(G) for the Hodge Laplacian L=dd* +d*d which lives on the same Hilbert space than L'. Both formulas hold for an arbitrary finite abstract simplicial complex G. Writing V_x(y)= g(x,y) for the Newtonian potential of the connection Laplacian, we prove sum_y V_x(y) = K(x), so that by the new Gauss-Bonnet formula, the Euler characteristic of G agrees with the total potential theoretic energy sum_x,y g(x,y)=X(G) of G. The curvature K now relates to the probability measure p minimizing the internal energy U(p)=sum_x,y g(x,y) p(x) p(y) of the complex. Since both the internal energy (here linked to topology) and Shannon entropy are natural and unique in classes of functionals, we then look at critical points p the Helmholtz free energy F(p)=(1-T) U(p)-T S(p) which combines the energy functional U and the entropy functional S(p)=-sum_x p(x) log(p(x)). As the temperature T changes, we observe bifurcation phenomena. Already for G=K_3 both a saddle node bifurcation and a pitchfork bifurcation occurs. The saddle node bifurcation leads to a catastrophe: the function T -> F(p(T),T) is discontinuous if p(T) is a free energy minimizer.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)