Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

CLTune: A Generic Auto-Tuner for OpenCL Kernels (1703.06503v1)

Published 19 Mar 2017 in cs.PF, cs.AI, and cs.DC

Abstract: This work presents CLTune, an auto-tuner for OpenCL kernels. It evaluates and tunes kernel performance of a generic, user-defined search space of possible parameter-value combinations. Example parameters include the OpenCL workgroup size, vector data-types, tile sizes, and loop unrolling factors. CLTune can be used in the following scenarios: 1) when there are too many tunable parameters to explore manually, 2) when performance portability across OpenCL devices is desired, or 3) when the optimal parameters change based on input argument values (e.g. matrix dimensions). The auto-tuner is generic, easy to use, open-source, and supports multiple search strategies including simulated annealing and particle swarm optimisation. CLTune is evaluated on two GPU case-studies inspired by the recent successes in deep learning: 2D convolution and matrix-multiplication (GEMM). For 2D convolution, we demonstrate the need for auto-tuning by optimizing for different filter sizes, achieving performance on-par or better than the state-of-the-art. For matrix-multiplication, we use CLTune to explore a parameter space of more than two-hundred thousand configurations, we show the need for device-specific tuning, and outperform the clBLAS library on NVIDIA, AMD and Intel GPUs.

Citations (116)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.