Zero-Shot Learning by Generating Pseudo Feature Representations (1703.06389v1)
Abstract: Zero-shot learning (ZSL) is a challenging task aiming at recognizing novel classes without any training instances. In this paper we present a simple but high-performance ZSL approach by generating pseudo feature representations (GPFR). Given the dataset of seen classes and side information of unseen classes (e.g. attributes), we synthesize feature-level pseudo representations for novel concepts, which allows us access to the formulation of unseen class predictor. Firstly we design a Joint Attribute Feature Extractor (JAFE) to acquire understandings about attributes, then construct a cognitive repository of attributes filtered by confidence margins, and finally generate pseudo feature representations using a probability based sampling strategy to facilitate subsequent training process of class predictor. We demonstrate the effectiveness in ZSL settings and the extensibility in supervised recognition scenario of our method on a synthetic colored MNIST dataset (C-MNIST). For several popular ZSL benchmark datasets, our approach also shows compelling results on zero-shot recognition task, especially leading to tremendous improvement to state-of-the-art mAP on zero-shot retrieval task.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.