Papers
Topics
Authors
Recent
2000 character limit reached

Preserving Data-Privacy with Added Noises: Optimal Estimation and Privacy Analysis (1703.06212v1)

Published 17 Mar 2017 in cs.IT and math.IT

Abstract: Networked system often relies on distributed algorithms to achieve a global computation goal with iterative local information exchanges between neighbor nodes. To preserve data privacy, a node may add a random noise to its original data for information exchange at each iteration. Nevertheless, a neighbor node can estimate other's original data based on the information it received. The estimation accuracy and data privacy can be measured in terms of $(\epsilon, \delta)$-data-privacy, defined as the probability of $\epsilon$-accurate estimation (the difference of an estimation and the original data is within $\epsilon$) is no larger than $\delta$ (the disclosure probability). How to optimize the estimation and analyze data privacy is a critical and open issue. In this paper, a theoretical framework is developed to investigate how to optimize the estimation of neighbor's original data using the local information received, named optimal distributed estimation. Then, we study the disclosure probability under the optimal estimation for data privacy analysis. We further apply the developed framework to analyze the data privacy of the privacy-preserving average consensus algorithm and identify the optimal noises for the algorithm.

Citations (83)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.